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Comparison between Carcinogenicity
and Mutagenicity Based on Chemicals
Evaluated in the IARC Monographs
by H. Bartsch* and L. Tomatis*

The qualitative relationship between carcinogenicity and mutagenicity (DNA-damaging
activity), based on chemicals which are known to be or suspected of being carcinogenic to man
and/or to experimental animals, is analyzed using 532 chemicals evaluated in Volumes 1-25 of the
IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. About
40 compounds (industrial processes) were found to be either definitely or probably carcinogenic
to man, and 130 chemicals have been adequately tested in rodents and most of them also in
various short-term assays. For a comparison between the carcinogenicity of a chemical and its
behavior in short-term tests, systems were selected that have a value for predicting carcinogenic-
ity. These were divided into mutagenicity in (A) the S. typhimurium/microsome assay, (B) other
submammalian systems and (C) cultured mammalian cells; (D) chromosomal abnormalities in
mammalian cells; (E) DNA damage and repair; (F) cell transformation (or altered growth
properties) in vitro.
The following conclusions can be drawn. In the absence of studies in man, long-term animal

tests are still today the only ones capable of providing evidence of the carcinogenic effect of a
chemical. The development and application of an appropriate combination of short-term tests
(despite current limitations) can significantly contribute to the prediction/confirmation of the
carcinogenic effects of chemicals in animals/man. Confidence in positive tests results is increased
when they are confirmed in multiple short-term tests using nonrepetitive end points and different
activation systems. Assays to detect carcinogens which do not act via electrophiles (promoters)
need to be developed. The results of a given short-term test should be interpreted in the context of
other toxicological data. Increasing demand for quantitative carcinogenicity data requires
further examination of whether or not there is a quantitative relationship between the potency of
a carcinogen in experimental animals/man, and its genotoxic activity in short-term tests. At
present, such a relationship is not sufficiently established for it to be used for the prediction of
the carcinogenic potency of new compounds.

There is increasing evidence to suggest that
DNA damage (expressed mainly as mutations) is
involved in the induction ofmany cancers; however,
the relevance of the various biological end points
used in short-term assays to mechanisms of tumor
induction is not known precisely. All test proce-
dures must therefore be validated before they can
be used to predict the carcinogenicity of chemicals.
Ideally, such validations would be based on correla-
tions between responses in short-term tests and
data from epidemiological studies in humans.

*Division of Environmental Carcinogenesis, International Agency
for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon
Cedex 8, France.

Chemicals evaluated in Volumes 1-25 of the
IARC Monographs on the Evaluation of the Carci-
nogenic Risk of Chemicals to Humans (1-26) as
either definitely or probably carcinogenic to humans,
and which have been tested in various mutagenic
and other short-term assays, offer a basis for such
an analysis. For the purpose of this discussion,
therefore, we used information available through
the IARC program on the evaluation of the carci-
nogenic risk of chemicals to humans, in which
monographs are prepared on individual chemicals,
groups of chemicals, or industrial processes (27). A
total of 532 compounds have been evaluated in that
program.

Epidemiological studies and/or case reports were
available for only about 60 chemicals, groups of
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chemicals, industries or industrial processes; for 22
of these, the available evidence was sufficient to
support a causal relationship with the occurrence of
cancers in humans (Table 1). Among the latter are
seven industrial processes (the manufacture of
auramine, chromate-producing industries, hematite
mining, the manufacture of isopropyl alcohol, nickel
refining, boot and shoe manufacture and repair, and
the furniture/cabinet-making industry). For these
processes, no direct correlation can be made between
data for humans and for experimental animals,
because the identity of the agent(s) responsible for
the carcinogenic effect in humans is unknown. The
remaining 15 compounds were also found to be
carcinogenic in one or (mostly) several experimen-
tal animal species. Results of a recent long-term
carcinogenicity test of benzene point to its carcino-
genicity in rats (28). Results of carcinogenicity
tests on arsenic were negative, although there is
sufficient evidence that arsenic compounds induce
skin and lung cancer in humans.
An additional 18 compounds were considered as

probably carcinogenic to humans (Table 2). While
the carcinogenicity to humans of the previous group
of chemicals and industrial processes could be
assessed exclusively on the basis of epidemiological
data that provided sufficient evidence of a causal
relationship, the carcinogenic risk of this second

Table 1. Chemicals, groups of chemicals, industries or indus-
trial processes associated with the induction of cancer in

humans.a

Chemicals and groups Industries and
of chemicals industrial processes

4-Aminobiphenyl Auramine (manufacture)
Arsenic and arsenic compounds Boot and shoe manufacture
Asbestos and repairb
Benzene Furniture and cabinet-making
Benzidine industryb
N,N-Bis(2-chloroethyl)-2- Hematite mining (radon?)

naphthylamine Isopropyl alcohol (manufac-
Bis(chloromethyl) ether and ture by using the strong-

technical-grade chloromethyl acid process
methyl ether Nickel refining

Chromium and certain chromium
compounds

Conjugated estrogensb
Cyclophosphamideb
Diethylstilbestrol
Melphalan
Mustard gas
2-Naphthylamine
Soots, tars and mineral oils
Vinyl chloride

aCompiled from IARC Monographs on the Evaluation of the
Carcinogenic Risk of Chemicals to Humans (1-26).
bAdded to IARC (21) by subsequent working groups at

IARC.

Table 2. Chemicals, groups of chemicals, industries or indus-
trial processes strongly suspected of being associated with

the induction of cancer in humans.a

Subgroup A: Subgroup B:
Higher degree of Lower degree of
human evidence human evidence

Aflatoxins Acrylonitrile
Cadmium and certain cadmium Amitrole
compounds Auramine

Chlorambucil Azathioprineb
Nickel and certain nickel Beryllium and certain
compounds beryllium compounds

Tris(1-aziridinyl)phosphine Carbon tetrachloride
sulfide (thio-TEPA) Dimethyl carbamoyl chloride

Dimethyl sulfate
Ethylene oxide
Iron dextran
Oxymetholone
Phenacetin
Polychlorinated biphenyls
(PCBs)

aCompiled from IARC Monographs on the Carcinogenic Risk
of Chemicals to Humans (1-26).
bAdded to IARC (21) by a subsequent working group at

IARC.

group of chemicals was evaluated taking into con-
sideration evidence from studies in both humans
and experimental animals (21). The evidence that
chemicals in this group are carcinogenic to humans
varies from being almost sufficient (subgroup A) to
suggestive (subgroup B).
The remaining compounds for which epidemiolog-

ical data were available are: chloramphenicol,
chlordane/heptachlor, chloroprene, DDT, dieldrin,
epichlorohydrin, hematite, hexachlorocyclohexane
(BHC and lindane), N-phenyl-2-naphthylamine,
phenytoin, reserpine, styrene, trichloroethylene,
triaziquone, o-dichlorobenzene, dichlorobenzidine,
phenylbutazone, 2, 3, 7, 8-tetrachlorodibenzo-p-
dioxin, o- and p-toluidine and vinylidene chloride.
These could not be classified as to their carcinoge-
nicity to humans due to limitations of the available
epidemiological data and/or to the fact that only
limited evidence of carcinogenicity was provided by
data from experimental animals. For those com-
pounds, therefore, no comparison can be made
between epidemiological and experimental data.

For a comparison between the carcinogenicity of
a chemical in humans and its behavior in mutagenic-
ity and other short-term tests, a number of systems
were selected on the basis of data in the literature
that indicate their value for predicting carcinoge-
nicity or their ability to detect specific classes of
carcinogens (Table 3). The list is not exhaustive,
since many assays are still being evaluated in terms
of their usefulness, their reproducibility and their
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Table 3. Selected short-term tests for the detection of chemical carcinogens or promoting agents.a

System (reference) Genetic/biochemical end point monitored Metabolic activation system

A. Mutagenesis in Salmonella Histidine auxotrophs Postmitochondrial rodent (or human)
typhimurium (29-31) liver fractions

B. Mutagenesis in other submammalian
indicator organisms
Escherichia coli (32-35) Arginine and tryptophan auxotrophs Host-mediated assays (urine and feces

Prophage induction, growth inhibition analysis) in vivo
(repair-deficient strains)

Saccharomyces cerevisiae (36) Mutations, gene conversion and mitotic
recombinations

Neurospora crassa (37) Adenine auxotrophs
Drosophila melanogaster (38) Recessive lethal mutations

C. Mutagenesis in cultured mammalian cells
Chinese hamster ovary (CHO) and Mutations at HGPRT-locus Postmitochondrial rodent liver fraction

lung (39-43)
Mouse lymphoma (L-5178Y) (44) TK+'1K-'- mutations Cell-mediated assays (cocultivation of
Rat liver epithelial cells (45) 8-Azaguanine resistance lethally irradiated rat embryo cells or

hepatocytes)
D. Chromosome analysis
Chinese hamster cells and human Sister chromatid exchanges, Postmitochondrial rodent liver

fibroblasts; human peripheral blood chromosomal aberrations fraction in vivo
lymphocytes (46-48)

E. DNA damage and repair
Chinese hamster lung (V79) (49) Single-strand breaks in DNA Postmitochondrial rodent liver

(alkaline elution) fraction in vivo
Various rodent tissues (treatment

in vivo (59)
HeLa cells, rat hepatocytes, human skin Unscheduled DNA repair

fibroblasts (51-53)
DNA synthesis in vitro (54) Decreased fidelity

F. In vitro cell transformation (altered
growth properties)
Early-passage Syrian hamster embryo Morphological transformations None
(55) Mouse embryo C3H/1OT1/2 (56, 57)
Newborn Syrian hamster kidney Growth in agar Postmitochondrial rodent liver fraction
(BHK21) (58, 59)

aThese tests were selected on the basis of data which indicate: their sensitivity in dectecting several classes of carcinogens and of
discriminating between carcinogens and noncarcinogens or their unique capability to detect particular classes of carcinogen or
promoting agent. This list is not exhaustive and the degree to which these tests have been validated varies widely.

comparability with carcinogenicity data obtained in
vivo (59,60). The tests considered were divided
arbitrarily into six categories on the basis of their
end points: (A) mutagenicity in the Salmonella
typhimurium microsome assay; (B) mutagenicity in
other submammalian systems, including Escherichia
coli, Saccharomyces cerevisiae, Neurospora crassa
and Drosophila melanogaster; (C) mutagenicity in
cultured mammalian cells; (D) chromosomal abnor-
malities in mammalian cells; (E) DNA damage and
repair in mammalian cells; (F) cell transformation
(or altered growth properties) in vitro.
The test systems considered either incorporate

some aspects of mammalian metabolism, e.g., by
adding a microsomal fraction of rodent or human
liver in vitro or by using metabolically competent
rodent cells, or involve activation in vivo, as in the
host-mediated assay in intact mammalian organ-
isms and in the test in Drosophila melanogaster

(Table 3). Because of its efficiency, low cost and
rapidity, the Salmonella/microsome test has been
used most extensively; it therefore also has been
most extensively validated, and 30 identified and
suspected human carcinogens have been assayed
(Tables 4 and 5). Of these 21 (70%) were detected as
mutagens. Of the known human carcinogens (Table
4), arsenic compounds (arsenite, As"'I), asbestos,
benzene and diethylstilbestrol were not mutagenic
in this test. Sodium arsenite induces point muta-
tions in E. coli WP2 strain and caused chromosomal
aberrations in cultured human peripheral lympho-
cytes. Metal carcinogens are normally not muta-
genic in the Salmonella test when it is carried out
by the standard procedure, although certain metal
salts, such as hexavalent chromium compounds, are
genotoxic in bacterial and mammalian systems.
Several metal carcinogens also decrease the fidelity
of DNA polymerase in vitro and are active in the
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cell transformation test. Diethylstilbestrol weakly
stimulates unscheduled DNA synthesis in HeLa
cells (51), induces mutations in the mouse lym-
phoma L-5178 (TK '-/TK') system (44), but not in
Chinese hamster V79 cells in the presence of rat

hepatocytes (61), and transforms early-passage
Syrian hamster embryo cells, but not BHK-21 cells
(31,55).
Of the possible human carcinogens (Table 5),

amitrole, carbon tetrachloride and polychlorinated

Table 4. Identified human carcinogens and their effects in some short-term assays.a,b

Mutagenicity Mutagenicity in Mutagenicity DNA
in Salmonella other submam- in mammalian Chromosome damage Cell trans-

Human carcinogen (A) malian assays (B) cells analysis and repair formation

4-Aminobiphenyl + + + +
Arsenic compounds - + +
Asbestos +
Auramine (dye mixture) +
Benzene +
Benzidine + + +
N,N-Bis(2-chloroethyl)-2-naphthylamine +
Bis(chloromethyl)ether + +
Chromium compounds + + + + + +
Cyclophosphamidec + + + + + +
Diethylstilbestrol + +;-
Melphalan + + +
Mustard gas + + + +
2-Naphthylamine + +
Soot +
Vinyl chloride + + + + +

aCode (+) correctly identified carcinogen; (-) false-negative response. From IARC Monographs 1-25 (1-26) and from references in
Table 3; classification refers to test systems grouped in Table 3.
bConjugated estrogens and industrial processes, i.e., hematite mining, manufacture of isopropyl alcohol, nickel refining, boot and

shoe manufacture and repair, and furniture and cabinet-making industries, have been omitted, since no results from short-term tests
were available.

cClassified as a human carcinogen by a working group at IARC, Lyon, October 1980.

Table 5. Possible human carcinogens and their effects in some short-term assays.a

Mutagenicity Mutagenicity in Mutagenicity DNA
in Salmonella other submam- in mammalian Chromosome damage Cell trans-

Possible human carcinogen (A) malian systems (B) cells analysis and repair formation

Acrylonitrile + +
Aflatoxinsb + + + + + +
Amitrole - - +
Auramine (pure) - +
Azathioprinec + + +
Beryllium compounds - - + + + +
Cadmium compounds +
Carbon tetrachloride
Chlorambucil + + + +
Dimethylcarbamoyl chloride + + +
Dimethylsulfate +
Ethylene oxide + + - +
Iron dextran
Nickel compounds + + +
Oxymetholone
Phenacetin + - +
Polychlorinated bipenyls (PCBs)
Tris(l-aziridinyl)phosphine sulfide + + +

(thio-TEPA)

aCode (+) correctly identified carcinogen; (-) false-negative response. From IARC Monographs 1-25 (1-26) and from references in
Table 3; classification refers to test systems grouped in Table 3.

bResults in short-term tests refer to aflatoxin B1 only.
cEvaluated and classified as possible human carcinogen by a working group at IARC, Lyon, October 1980.

308



MUTAGENICITY AND CARCINOGENICITY OF ENVIRONMENTAL CHEMICALS

biphenyls (PCBs), for which there is sufficient
evidence of carcinogenicity in experimental ani-
mals, were not mutagenic in the Salmonella test.
PCBs were negative in all other short-term assays.
Phenacetin can be detected as a bacterial mutagen
in S. typhimurium if hamster liver fractions are
used instead of the rat liver preparations generally
added in routine testing (62,63). Afiatoxin B1 and
cyclophosphamide gave uniformly positive results
in all six test systems. Because of the limitations of
individual systems, confidence in positive results
obtained with new compounds is increased when
the results are confirmed in other short-term tests,
using either nonrepetitive end points (e.g., those
mentioned in Table 3), or different activation sys-
tems. When results obtained in several test sys-
tems (Table 4 and 5) are combined, it can be seen
that 19 our of 34 known or possible human carcino-
gens were tested in both systems A and B; while 13
and 14 of the 19 were positive in both A and B,
respectively, 15 were positive in at least one of the
two assays.

Negative results obtained in a battery of short-
term tests in the absence of animal data are
certainly reassuring; however, given the present
limitations, it is still necessary to await the results
of long-term tests in animals to confirm the absence
of a carcinogenic effect, as illustrated by the
example of PCBs (Table 5). Cancer induction may
occur in multiple steps; some compounds may act,
not as complete carcinogens or initiating agents,
but as promoters, and are therefore not detectable
as electrophilic mutagens. It is therefore essential
that assays be developed to detect agents that do
not appear to act via electrophilic intermediates but
enhance or initiate carcinogenesis by other mecha-
nisms, which today would be missed even in a
comprehensive screening program. The possibly
multifactorial origin of certain human cancers indi-
cates the need for assays to study the interactions
between viruses, carcinogens and tumor-promoting
agents (64).

Comparison between Data from
Long-Term Animal Carcinogenicity
Tests and Results of Mutagenicity
(Short-Term) Tests
There is a universal consensus that exposure to

chemicals causally associated (or strongly suspected
of being associated) with the occurrence of cancer in
humans must be avoided, although some disagree-
ment might persist on how, and how quickly, this
should be done. A different and major problem is

the evaluation of the possible carcinogenic hazard
to humans of chemicals which have not been studied
epidemiologically or noted in case reports. In an
attempt to provide better assistance to regulatory
bodies, the IARC revised the criteria used with the
IARC Monographs Program for assessing the
significance of experimental animal data for predict-
ing the possible carcinogenic risk of chemicals to
humans (19-21). According to these criteria, "sufficient
evidence" of carcinogenesis is provided by experi-
mental studies that show an increased incidence of
malignant tumors: (a) in multiple species and strains;
and/or (b) in multiple experiments (routes or doses);
and/or (c) to an unusual degree (with regard to
incidence, site, type and/or precocity of onset).

"Limited evidence" of carcinogenicity is provided
by experimental data that suffer from certain
drawbacks: (a) they were obtained in a single
animal species, strain or experiment or in experi-
ments that were restricted by inadequate dosage
levels, by inadequate duration of exposure or of
period of follow-up or by poor survival; (b) the
neoplasms seen occur spontaneously, or are difficult
to classify as malignant by histological criteria
alone; (c) there is uncertainty about whether the
incidence of tumors in test animals was increased in
comparison with that in control animals. ("Sufficient
evidence" of carcinogenicity and "limited evidence"
of carcinogenicity do not represent categories of
chemicals, but indicate varying degrees of experi-
mental evidence and do not refer to the potency of
the compound as a carcinogen.)
Of the chemicals evaluated in the first 25 volumes

of the IARC Monographs, 130 had "sufficient evi-
dence" of carcinogenicity in experimental animals
(Table 6). According to the criteria, in the absence
of adequate human data, chemicals for which there
is sufficient evidence of carcinogenicity in labora-
tory animals should be regarded, for practical
purposes, as if they presented a carcinogenic risk to
humans. The use of the expressions "for practical
purposes" and "as if they presented a carcinogenic
risk" indicates that the correlation between the
experimental data and possible human risk was not
made on a purely scientific basis, but rather in an
attempt to provide regulatory bodies with one of
the elements on which priorities in the formulation
of preventive measures can be based.
As shown above, there is a good empirical

correlation between epidemiological and experimen-
tal data, and experimental data may predict a
qualitatively similar response in humans; however,
this correlation cannot be used to predict quanti-
tative variations in the responses of different spe-
cies. We are still a long way from the possibility of
making scientifically acceptable direct extrapola-
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Table 6. Chemicals evaluated in Volumes 1-25 of the IARC Monographs for which there is sufficient evidence of
carcinogenicity in experimental animals.a

IARC Monograph IARC Monograph
Compound Volume Page no. Compound Volume Page no.

Actinomycins 10
o-Aminoazotolune 8
2-Amino-5-(5-nitro-2-furyl)-1,3,4-thiadiazole 7
Aramite 5
Azaserine 10
Benz(a)anthracene 3
Benzo(b)fluoranthene 3
Benzo(b)pyrene 3
Benzyl violet 4B 16
Beryllium oxide 1

23
Beryllium phosphate 1

23
Beryllium sulfate 1

23
3-Butyrolactone 11
Cadmium chloride 2

11
Cadmium oxide 2

11
Cadmium sulfate 2

11
Cadmium sulfide 2

11
Calcium chromate 2

23
Chlordecone (Kepone) 20
Chloroform 20
Citrus red no. 2 8
Cycasin 1

10
Daunomycin 10
N,N'-Diacetylbenzidine 16
4,4'-Diaminodiphenyl ether 16
2,4-Diaminotoluene 16
Dibenz(a,h)acridine 3
Dibenz(a,j)acridine 3
Dibenz(a,h)anthracene 3
7H-Dibenzo(c,g)carbazole 3
Dibenzo(a,e)pyrene 3
Dibenzo(a,h)pyrene 3
Dibenzo(a,i)pyrene 3
1,2-Dibromo-3-chloropropane 15

20
3,3'-Dichlorobenzidine 4
3,3'-Dichloro-4,4'-diaminodiphenyl ether 16
1,2-Dichloroethane 20
Diepoxybutane 11
1,2-Diethylhydrazine 4
Diethyl sulfate 4
Dihydrosafrole 1

10
3,3'-Dimethoxybenzidine(o-dianisidine) 4
Dimethylaminoazobenzene 8
Trans-2[(dimethylamino)methylimino]-5-[2-

(5-nitro-2-furyl)vinyl]-1,3,4-oxadiazole
3,3'-Dimethylbenzidine (o-tolidine)
1,1-Dimethylhydrazine
1,2-Dimethylhydrazine
1,4-Dioxane

29
61
143
39
73
45
69
91
153
17

143
17

146
17

146
225
74
39
74
39
74
39
74
39
100
212
67

401
101
157
121
145
293
301
83

247
254
178
260
207
207
215
139
83
49

309
429
115
153
277
170
233
41
125

7 147
1 87
4 137
4 145

11 247

Estradiol-17, and its esters

Estrone and its esters

Ethinylestradiol

Ethylene dibromide
Ethylenethiourea
Ethyl methanesulfonate
2-(2-Formylhydrazino)-4-(5-nitro-2-

furyl)thiazole
Glycidaldehyde
Hexachlorobenzene
Hexamethylphosphoramide
Hydrazine
Indeno(1,2,3-cd)pyrene
Isosafrole

Lasiocarpine
Lead acetate

Lead chromate
Lead phosphate

Lead subacetate

Melphalan
Mestranol

Methoxsalen + ultraviolet light
2-Methylaziridine
Methylazoxymethanol and its acetate

4,4'-Methylene bis(2-chloroaniline)
4,4'-Methylene bis(2-methylaniline)
Methyl iodide
Methyl methanesulfonate
N-Methyl-N1-nitro-Nl-nitrosoguanidine
Methylthiouracil
Mirex

Mitomycin C
Monocrotaline
5-(Morpholinomethyl)-3[(5-nitro-

furfurylidene)-amino]-2-oxazolidinone
Nafenopin
Nickel subsulfide

Niridazole
5-Nitroacenaphthene
1-[(5-Nitrofurfurylidene)amino]-2-

imidazolidinone
N-[4-(5-Nitro-2-furyl)-2-thiazolyl]acetamide

Nitrogen mustard and its hydrochloride
Nitrogen mustard N-oxide and its

hydrochloride
N-Nitrosodi-n-butylamine

N-Nitrosodiethanolamine

6 99
21 279
6 123

21 343
6 77

21 233
15 195
7 45
7 245

7 151
11 175
20 155
15 211
4 127
3 229
1 169

10 232
10 281
1 40

23 327
23 208
1 40

23 327
1 40

23 327
9 167
6 87

21 257
24 101
9 61
1 164

10 131
4 65
4 73
15 245
7 253
4 183
7 53
5 203

20 283
10 171
10 291

7 161
24 125
2 126
11 75
13 123
16 319

7 181
1 181
7 185
9 193

9 209
4 197
17 51
17 77
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Table 6. (continued)

IARC Monograph

Compound Volume Page no.

N-Nitrosodiethylamine 1 107
17 83

N-Nitrosodimethylamine 1 95
17 125

N-Nitrosodi-n-propylamine 17 177
N-Nitroso-N-ethylurea 1 135

17 191
N-Nitrosomethylethylamine 17 221
N-Nitroso-N-methylurea 1 125

17 227
N-Nitroso-N-methylurethane 4 211
N-Nitrosomethylvinylamine 17 257
N-Nitrosomorpholine 17 263
N'-Nitrosonornicotine 17 281
N-Nitrosopiperidine 17 287
N-Nitrosopyrrolidine 17 313
N-Nitrososarcosine 17 327
Oil orange SS 8 165
Panfuran-S 24 77
Phenazopyridine and its hydrochloride 24 163
Phenoxybenzamine and its hydrochloride 24 185
Ponceau MX 8 189
Ponceau 3R 8 199
1,3-Propane sultone 4 253
,B-Propiolactone 4 259
Propylthiouracil 7 67
Safrole 1 69

10 231
Sintered calcium chromate 23 302
Sintered chromium trioxide 23 302
Sodium saccharin 22 113
Sterigmatocystin 1 175

10 245
Streptozotocin 4 221

17 337
Strontium chromate 23 215
Testosterone and its esters 6 209

21 519
Thioacetamide 7 77
Thiourea 7 95
Toxaphene (polychlorinated camphenes) 20 327
Tris(2,3-dibromopropyl)phosphate 20 575
Trypan blue (commercial grade) 8 267
Uracil mustard 9 235
Urethane 7 111

Zinc beryllium silicate 23 146
Zinc chromate 23 215

aExcluding those chemicals associated with cancer induction
in humans listed in Tables 1 and 2.

tion from experimental data to the human situation.
We are even further from an extrapolation to

human risk from experimental situations, such as
those occurring with short-term tests, which do not
have the production of tumors as their end point.
The number of chemicals which have been definitely
recognized or are suspected of being carcinogenic to
humans is too small (Tables 4 and 5) to provide a

basis for validation of short-term tests. At present,
objective judgment of the value of mutagenicity
tests for predicting the carcinogenicity of chemicals
must perforce be based on comparison with the
much larger number of chemicals shown to be
carcinogenic (or noncarcinogenic) in experimental
animals.
The selection of such chemicals (or classes of

chemicals) for validation studies is biased by the
fact that it is limited to those for which car-
cinogenicity data are available. Moreover, the num-
ber of chemicals for which there is adequate evi-
dence of noncarcinogenicity is very small. Thus, the
empirically established predictive value of short-
term tests (31,62,65) is clearly influenced by the
quality of the animal data used as a standard for the
validation. The level of correlation between results
from mutagenicity or other screening tests and
those from animal bioassays can thus most reliably
be examined by testing chemicals for which there is
sufficient evidence of carcinogenicity in animals
(Table 6, excluding those listed in Tables 1 and 2).
Of these, two-thirds (85) have been tested in tne
Salmonella/microsome mutagenicity test, and 79%
(67/85) were found to be mutagenic. Those which
were not mutagenic in the Salmonella/microsome
plate test were actinomycins, benzyl violet 4B,
beryllium sulfate, chloroform, 1,2-dimethylhydrazine,
1,4-dioxane, ethinylestradiol, lead acetate, hexa-
methylphosphoramide, nafenopin, N-nitrososarcosine
(tested in the host-mediated assay using Salmonel-
la), 17,-estradiol, estrone, safrole, sodium saccha-
rin, thioacetamide, thiourea and urethane.
Some of the reasons for production of false-

negative results by certain carcinogens in bacterial
mutagenicity tests have been discussed in detail
(66). In the case of 1,2-dimethylhydrazine, such
results may be attributable to inadequacies in the
in vitro metabolic activation system currently used,
since this compound was mutagenic in the host-
mediated assay (67). Similarly, those chemicals
such as mitomycin C, which produce mutations in
eukaryotic organisms only, e.g., by interference
with functions that are not present in prokaryotes,
would also be missed in bacterial mutagenicity
tests. Certain classes of compounds, however, may
not be detectable as mutagens, even with improve-
ments in in vitro activation systems of increased
sensitivity of genetic indicator organisms; these
appear to include sex hormones, thyroid-active
compounds, tumor promoters and physically acting
agents. As emphasized above, it is essential to
develop short-term assays that can detect agents
which are definitely carcinogenic in animals but
which probably do not act via electrophilic interme-
diates.
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Quantitative Correlations between
the Carcinogenic and Mutagenic
Activity
Published studies that have examined a possible

quantitative correlation between carcinogenicity in
vivo and mutagenicity in vitro include those of
Meselson and Russel (68), who calculated the carci-
nogenic potency of 14 chemicals as the TD50 (the
daily dose of a carcinogen which gives a 50%
incidence of cancer in rodents after two years'
exposure). Mutagenic activity was determined from
results in the Salmonella/microsome test, using the
most sensitive bacterial strain. In a double loga-
rithmic plot of mutagenic and carcinogenic activity,
most of the compounds showed a linear correlation,
with the notable exception of several N-nitroso
compounds. Clive et al. (44) reported correlation
studies on 25 chemicals. Carcinogenic activity in
rats and mice was expressed as the frequency of
tumor-bearing animals per pumole of compound
administered per kilogram body weight. This was
compared with mutagenic activity in the L5178Y
TK+'-TK(7' mouse lymphoma system in the pre-
sence of rat liver fractions, expressed as number of
TK-'- mutants per cell per ,umole-hr/mL. An approx-
imately linear relationship was obtained over a
105-fold range in activity.
Hsieh et al. (69) compared the rat liver micro-

some-mediated mutagenicities of aflatoxin B1 and
several structural analogues with their potency as
hepatocarcinogens in several animal species. A
good parallelism was found although the carcinoge-
nicity indices were not calculated. Nagao et al. (70)
tested 31 N-nitrosamines, either structurally or
metabolically related to N-n-butyl-N-(4-hydroxy-n-
butyl)nitrosamine or to N,N-di-n-butylnitrosamine,
in the Salmonella/microsome mutagenicity assay,
using a testing procedure whereby the compound
and a 9000g supernatant from PCB-treated rats
were preincubated 20 min in the presence of S.
typhimurium strains TA 100 and TA 1535 and then
plated. The authors concluded that the mutagenici-
ties of these compounds were not related quantita-
tively to their potencies as carcinogens.
Langenbach et al. (43) assayed a series of ,-oxidized

derivatives of N-nitrosodi-n-propylamine for muta-
genicity in two systems: (1) liquid incubation assays
in the presence of S. typhimurium TA 1535 and
hamster liver homogenate, and (2) Chinese V79
hamster cells cocultivated with freshly isolated
hamster hepatocytes. The mutagenic activity of the
four nitroso compounds correlated better with their
carcinogenic activity in the hamster in assay (2)
than in assay (1). In another study, several hydra-

zine derivatives were tested both in the Salmonella/
microsome assay in the presence of rat liver frac-
tions, and for the induction of DNA damage in liver
or lung tissue in vivo by using an alkaline elution
assay (71). The authors concluded that the ability of
the 12 compounds to induce lung tumors in mice
was better reflected by the assay for DNA damage.
Coombs et al. (72) measured the liver micro-

some-mediated mutagenicity of 35 polycyclic hydro-
carbons (derivatives ofcyclopentaphenanthrene and
chrysene) using Aroclor-pretreated rats and S.
typhimurium TA 100 strain. These results were
compared with data on carcinogenicity obtained
from skin painting experiments in mice and expressed
as Iball index: (percentage tumor incidence x 100)
mean latent period in days. The authors reported
little quantitative correspondence between carci-
nogenic potency and mutagenic activity. Huberman
and Sachs (73), however, using a cell-mediated
mutagenicity assay with Chinese hamster V79 cells
cocultivated with lethally irradiated rat embryo
cells for metabolic activation, found that the carci-
nogenicity of 10 polycyclic hydrocarbons paralleled
their mutagenicity, as measured by 8-azaguanine or
ouabain resistance.
The discrepancies observed between studies in

which metabolic activation was provided by cell-
free systems and those in which cellular metabolic
activation systems were used may be due in part to
the fact that certain ultimate reactive mutagenic
metabolites produced by rat liver microsomal sys-
tems in vitro may be different from those which are
generated in cells (74-76). This observation may
explain the lack of correlation between the mutage-
nicities of five hydrocarbons assayed in the pres-
ence of a rat liver microsomal system and their
carcinogenicities (expressed as Iball indices) on
mouse skin (Table 7) (77), which was particularly
evident for the benz(a)anthracene (BA) series.
Mutagenic activity decreased in the order BA >
7-methyl-BA > 7,12-dimethyl-BA, while carcinoge-
nicity increased in that order.

Wislocki et al. (78) also reported no quantitative
agreement between the mutagenicity in S. typhi-
murium TA 100 in the presence of activating
systems of hydroxymethyl and other derivatives of
7,12-dimethylbenz(a)anthracene and their tumor-
initiating activity in mouse skin (two-stage tumori-
genesis model).

Bartsch et al.(77) found, however, a very close
positive association between the liver microsome-
mediated mutagenicities of dihydrodiols that can
yield bay-region diol-epoxides and the carcinogenic
potencies of the parent hydrocarbons. These data
are consistent with the assumption that, under the
assay conditions utilized, liver microsomes in vitro
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Table 7. Relationship between the mutagenicity of polycyclic aromatic hydrocarbons and of certain related dihydrodiols in
microsome-mediated assays with Salmonella typhimurium TA 100 and the extents of reaction with DNA and of tumor initiation

and carcinogenesis in mouse skin treated with polycyclic hydrocarbons.a

Polycyclic hydrocarbon Related dihydrodiolb
Extent of

reaction with DNA Tumor initiation
Mutagenicity, his+ in mouse skin, on mouse skin, Mutagenicity, his+
revertants/nmolec pmole/mg DNAd tumors/pLmole Carcinogenicitye revertants/nmolec

Benz(a)anthracene 6 2 0.9 5 8.5
7-Methylbenz(a)anthracene 5 25 1.7 45 33
7,12-Dimethylbenz(a)

anthracene 2.4 42 819 95 80
3-Methylcholanthrene 17 26 102 90 35
Benzo(a)pyrene 29 25 25 70 101

aFrom Bartsch et al. (77).
bThe trans-dihydrodiols expected to be the metabolic precursors of "bay region" vicinal diol-epoxides were used in each case. These

were the 3,4-diols derived from benz(a)anthracene and 7-methylbenz(a)anthracene and 7,12-dimethylbenz(a)anthracene, the 9,10-diol
derived from 3-methylcholanthrene and the 7,8-diol derived from benzo(a)pyrene.

cMutations to his + were estimated in Salmonella typhimurium TA 100, and the values have been taken from the ascending linear
portion of the dose response curves.
dEstimated from Sephadex LH20 column elution profiles of hydrolyzates of DNA obtained from the skin of C57BL mice treated in

vivo with a 3H-labeled polycyclic hydrocarbon (1 ,umole/mouse) for 19 hr.
'Iball indices for skin tumor formation in mice.

produce predominantly simple, mutagenic oxides,
whereas cultured cells or cells in vivo can carry out
a three-step activation process involving the sequen-
tial formation of epoxides, diols and diol-epoxides.
The latter are now assumed to be the ultimate
carcinogenic metabolites of polycyclic hydrocarbons
(79,80). However, liver microsomes incubated with
the appropriate diol precursor catalyse the forma-
tion of vicinal diol-epoxides.

Differences in the pathways leading to interme-
diates that are mutagenic to S. typhimurium in
vitro and the electrophilic metabolites known to
bind to cellular macromolecules in vivo have also
become apparent for certain aromatic amines, e.g.,
2-acetylaminofluorene (AAF). Reactive esters like
AAF-N-sulfate andN-acetoxy-2-aminofluorene, which
are formed in vivo and in vitro, appear not to be
involved in bacterial mutagenesis when N-hydroxy-
AAF is incubated with rat liver postmitochondrial
supernatant and S. typhimurium strains (81). Such
differences could profoundly influence any quanti-
tative correlation between the bacterial mutagenic-
ity and the carcinogenicity of certain aromatic
amines.

In order to eliminate the vagaries of metabolic
activation, ultimate reactive compounds that do not
require enzymic activation and which are structur-
ally related were compared qualitatively and quan-
titatively in several short-term tests (82,83). Reac-
tive esters derived from N-hydroxy-2-aminofluorene
were assayed for electrophilicity by reaction with

methionine, for mutagenicity in S. typhimurium
strains and in Chinese V79 hamster cells or for the
induction of unscheduled DNA repair in cultured
human fibroblasts (measured by incorporation of
3H-thymidine, followed by autoradiography). Over-
all, the data showed a general, qualitative correla-
tion between induction of DNA repair, electrophi-
licity and carcinogenic activity of these esters.
However, quantitative correlations among these
activities were poor: the large difference observed
in the carcinogenic potency of N-myristoyloxy-
2-acetylaminofluorene (the most active carcino-
gen) and that of N-acetoxy-2-acetyl-aminofluorene
(the least active carcinogen) was not reflected by
the biological parameters measured in the in vitro
systems.

In another study of direct-acting carcinogens
(62), 10 monofunctional alkylating agents (including
carcinogenic N-nitrosamides, alkylmethane sulfo-
nates, epoxides, 3-propiolactone and 1,3-propane
sultone) were assayed for mutagenicity in two S.
typhimurium strains, TA 153.5 and TA 100, and in
two test procedures, plate and liquid assays. The
mutagenic activities in TA 100 and TA 1535 strains
(plate assays) were then compared with the carci-
nogenic activities of these alkylating agents, ex-
pressed as TD50 values (Table 8). Although the
TD50 values for the 10 compounds varied with the
mode of administration and animal species, there
was no obvious proportionality between carcinoge-
nicity in rodents and mutagenicity in either Salmo-
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Table 8. Comparison of carcinogenic activity (TD50) and mutagenicity in Salmonella typhimurium TA 100 and TA 1535 of 10
direct-acting alkylating agents.a

Mutagenicity in S. typhimuriumb Range of TD50 in

Compound TA 1535 TA 100 rodents, mg/kg'

N-Nitrosoethylurea 7450 2790 < 0.3 - 40
N-Nitrosomethylurea 660 550 < 5.4 - 155
N-Methyl-N'-nitro-N-nitrosoguanidine 5.7 4.2 1.1 - 262
N-Nitrosomethylurethane 12 9 6.9 -d < 119
Ethylmethane sulfonate 19100 14200 d
1,3-Propane sultone 40 40 < 3.5 - 1345
,B-Propiolactone 310 250 104 - 619
Methylmethane sulfonate NDe 680 1082 - 1399
Epichlorohydrin 1130 1130 13718
Glycidaldehyde 19 15 1422 - 16865

aLiterature data (62, 85).
bExpressed as concentration of the test compound (in ,umole/L) to produce 500 revertants/plate.
cTotal dose of carcinogen required to reduce by one-half the probability of the animals being tumor-free throughout a standard

lifetime. The formula proposed by Hooper et al. (86) and data cited in the IARC Monographs (1, 4, 7, 11, 17) were used for the
calculation of TD50 values:
TD50 = Dt3 (ln 2)/ln { [1-(nJ1N,)]/[1 - (nfelNe)]}, where D = total intake of carcinogen; t = experimental time/natural lifetime; n, =
number oftumor-bearing animals (TBA) among controls; N, = total number of controls; ne = TBA among experimental animals; Ne =
total number of experimental animals. Ranges of TD50 values in different rodent species (rats, mice and hamsters) and after different
modes of administration.
dTD50 > 175, noncarcinogenic.
eNot detected.

nella strain. For example, on the basis of the TD50
values, N-nitrosoethylurea was the most potent
carcinogen studied, but it was only weakly active as
a mutagen; glycidaldehyde was one of the most
mutagenic compounds, but it was only weakly
carcinogenic. These data on a limited number of
compounds indicate that a quantitative relationship
between the carcinogenesis and mutagenesis of
these direct-acting carcinogens in the two Salmo-
nella strains tested cannot be established with
enough precision to allow a confident prediction of
the carcinogenic potency of new compounds of this
class.

Conclusions
Although in the absence of adequate studies in

humans long-term animal tests are still today the
only ones capable of providing conclusive evidence
of the carcinogenic effect of a chemical, the devel-
opment and application of an appropriate combina-
tion of mutagenicity or other short-term tests to
screen the human environment, in order to identify
both man-made and naturally occurring carcino-
gens or mutagens, and to quantify their adverse
biological effects, is of particular importance. The
achievement of this goal will depend heavily on
progress made in elucidating the mechanisms of
carcinogenesis. Increasing demand for quantitative
carcinogenicity data should stimulate further exam-

ination of whether there is a quantitative relation-
ship between the potency of a carcinogen in exper-
imental animals and in humans, and its genotoxic
activity in short-term tests. Because mutagenic and
carcinogenic activities vary over a range of millions
(62,66,84), it has been argued that even if only a
rough correlation could be established between
these two biological activities, it would aid in the
assessment of risk of chemicals. However, a recent
study of 101 chemicals (62) revealed that about 90%
of the chemicals showed mutagenic activity ranging
over only four orders of magnitude. Thus, an
approximate correlation would be of limited practi-
cal value. The conflicting results of experimental
data published so far with regard to a possible
quantitative correlation between the potency of a
chemical carcinogen in animals and its activity in
short-term mutagenicity tests do not yet sufficiently
establish such a relationship for all classes of
carcinogens to allow its general use for the confident
prediction of carcinogen potency ofnew compounds.
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